Two efficient algorithms for approximately orthogonal nonnegative matrix factorization

Bo Li, Guoxu Zhou, Andrzej Cichocki

Результат исследований: Вклад в журналСтатьярецензирование

35 Цитирования (Scopus)

Аннотация

Nonnegative matrix factorization (NMF) with orthogonality constraints is quite important due to its close relation with the K-means clustering. While existing algorithms for orthogonal NMF impose strict orthogonality constraints, in this letter we propose a penalty method with the aim of performing approximately orthogonal NMF, together with two efficient algorithms respectively based on the Hierarchical Alternating Least Squares (HALS) and the Accelerated Proximate Gradient (APG) approaches. Experimental evidence was provided to show their high efficiency and flexibility by using synthetic and real-world data.

Язык оригиналаАнглийский
Номер статьи6960861
Страницы (с-по)843-846
Число страниц4
ЖурналIEEE Signal Processing Letters
Том22
Номер выпуска7
DOI
СостояниеОпубликовано - 1 июл. 2015
Опубликовано для внешнего пользованияДа

Fingerprint

Подробные сведения о темах исследования «Two efficient algorithms for approximately orthogonal nonnegative matrix factorization». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать