The PBW filtration, Demazure modules and toroidal current algebras

Результат исследований: Вклад в журналСтатьярецензирование

8 Цитирования (Scopus)

Аннотация

Let L be the basic (level one vacuum) representation of the affine Kac-Moody Lie algebra g. The m-th space Fm of the PBW filtration on L is a linear span of vectors of the form x1 ···xlv0, where l ≤ m, xi ∈ g and v0 is a highest weight vector of L. In this paper we give two descriptions of the associated graded space Lgr with respect to the PBW filtration. The "top-down" description deals with a structure of Lgr as a representation of the abelianized algebra of generating operators. We prove that the ideal of relations is generated by the coefficients of the squared field eθ(z)2, which corresponds to the longest root θ. The bottom-up description deals with the structure of Lgr as a representation of the current algebra g ⊗ C [t]. We prove that each quotient Fm/Fm-1 can be filtered by graded deformations of the tensor products of m copies of g.

Язык оригиналаАнглийский
Номер статьи070
ЖурналSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
Том4
DOI
СостояниеОпубликовано - 2008
Опубликовано для внешнего пользованияДа

Fingerprint

Подробные сведения о темах исследования «The PBW filtration, Demazure modules and toroidal current algebras». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать