Stochastic monitoring of distribution networks including correlated input variables

Gustavo Valverde, Andrija T. Saric, Vladimir Terzija

Результат исследований: Вклад в журналСтатьярецензирование

69 Цитирования (Scopus)

Аннотация

The evolving complexity of distribution networks with higher levels of uncertainties is a new challenge faced by system operators. This paper introduces the use of Gaussian mixtures models as input variables in stochastic power flow studies and state estimation of distribution networks. These studies are relevant for the efficient exploitation of renewable energy sources and the secure operation of network assets. The proposed formulation is valid for both power flow and state estimation problems. The method uses a combination of the Gaussian components used to model the input variables in the weighted least square formulation. In order to reduce computational demands, this paper includes an efficient optimization algorithm to reduce the number of Gaussian combinations. The proposed method was tested in a 69-bus radial test system and the results were compared with Monte Carlo simulations.

Язык оригиналаАнглийский
Номер статьи6231710
Страницы (с-по)246-255
Число страниц10
ЖурналIEEE Transactions on Power Systems
Том28
Номер выпуска1
DOI
СостояниеОпубликовано - 2013
Опубликовано для внешнего пользованияДа

Fingerprint

Подробные сведения о темах исследования «Stochastic monitoring of distribution networks including correlated input variables». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать