Retrieving comparative arguments using ensemble methods and neural information retrieval

Viktoriia Chekalina, Alexander Panchenko

Результат исследований: Вклад в журналСтатья конференциирецензирование

3 Цитирования (Scopus)


In this paper, we present a submission to the Touché lab's Task 2 on Argument Retrieval for Comparative Questions [1, 2]. Our team Katana supplies several approaches based on decision tree ensembles algorithms to rank comparative documents in accordance with their relevance and argumentative support. We use PyTerrier [3] library to apply ensembles models to a ranking problem, considering statistical text features and features based on comparative structures. We also employ large contextualized language modelling techniques, such as BERT [4], to solve the proposed ranking task. To merge this technique with ranking modelling, we leverage neural ranking library OpenNIR [5]. Our systems substantially outperforming the proposed baseline and scored first in relevance and second in quality according to the official metrics of the competition (for measure NDCG@5 score). Presented models could help to improve the performance of processing comparative queries in information retrieval and dialogue systems.

Язык оригиналаАнглийский
Страницы (с-по)2354-2365
Число страниц12
ЖурналCEUR Workshop Proceedings
СостояниеОпубликовано - 2021
Событие2021 Working Notes of CLEF - Conference and Labs of the Evaluation Forum, CLEF-WN 2021 - Virtual, Bucharest, Румыния
Продолжительность: 21 сент. 202124 сент. 2021


Подробные сведения о темах исследования «Retrieving comparative arguments using ensemble methods and neural information retrieval». Вместе они формируют уникальный семантический отпечаток (fingerprint).