Resolvent approach for two-dimensional scattering problems. Application to the nonstationary Schrödinger problem and the KPI equation

M. Boiti, F. Pempinelli, A. K. Pogrebkov, M. C. Polivanov

Результат исследований: Вклад в журналСтатьярецензирование

26 Цитирования (Scopus)

Аннотация

The resolvent operator of the linear problem is determined as the full Green function continued in the complex domain in two variables. An analog of the known Hilbert identity is derived. We demonstrate the role of this identity in the study of two-dimensional scattering. Considering the nonstationary Schrödinger equation as an example, we show that all types of solutions of the linear problems, as well as spectral data known in the literature, are given as specific values of this unique function - the resolvent function. A new form of the inverse problem is formulated.

Язык оригиналаАнглийский
Страницы (с-по)1200-1224
Число страниц25
ЖурналTheoretical and Mathematical Physics
Том93
Номер выпуска2
DOI
СостояниеОпубликовано - нояб. 1992
Опубликовано для внешнего пользованияДа

Fingerprint

Подробные сведения о темах исследования «Resolvent approach for two-dimensional scattering problems. Application to the nonstationary Schrödinger problem and the KPI equation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать