Random partitions and the gamma kernel

Alexei Borodin, Grigori Olshanski

Результат исследований: Вклад в журналСтатьярецензирование

28 Цитирования (Scopus)

Аннотация

We study the asymptotics of certain measures on partitions (the so-called z-measures and their relatives) in two different regimes: near the diagonal of the corresponding Young diagram and in the intermediate zone between the diagonal and the edge of the Young diagram. We prove that in both cases the limit correlation functions have determinantal form with a correlation kernel which depends on two real parameters. In the first case the correlation kernel is discrete, and it has a simple expression in terms of the gamma functions. In the second case the correlation kernel is continuous and translationally invariant, and it can be written as a ratio of two suitably scaled hyperbolic sines.

Язык оригиналаАнглийский
Страницы (с-по)141-202
Число страниц62
ЖурналAdvances in Mathematics
Том194
Номер выпуска1
DOI
СостояниеОпубликовано - 20 июн. 2005
Опубликовано для внешнего пользованияДа

Fingerprint

Подробные сведения о темах исследования «Random partitions and the gamma kernel». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать