Oxygen Reduction Reaction Mechanism Study Via the Mean-Field Microkinetic Modeling and Uncertainty Quantification of Model Parameters

Aleksandr Andreevich Kurilovich, Keith J. Stevenson

Результат исследований: Глава в книге, отчете, сборнике статейМатериалы для конференциирецензирование

1 Цитирования (Scopus)

Аннотация

We describe the quantitative framework for the reaction mechanism selection based on accuracy of fitting with mean-field microkinetic models and parameters uncertainty quantification to determine how likely certain reaction steps occur if some aspects of the system are not exactly known. The latter is performed via the data collaboration approach with Tree-Structured Parzen estimator algorithm. It provides the elucidation of the reaction mechanism which can be considered based on the available experimental data and is crucial to study the reaction mechanism of ORR and other sufficiently complex reactions. We consider the ORR models developed within the rate determining steps approximation for understanding effective multi-electron transfer steps.

Язык оригиналаАнглийский
Название основной публикацииSelected Proceedings from the 237th ECS Meeting with the 18th International Meeting on Chemical Sensors, IMCS 2020
ИздательInstitute of Physics Publishing
Страницы757-762
Число страниц6
Издание7
ISBN (электронное издание)9781607685395
DOI
СостояниеОпубликовано - 1 апр. 2020
Событие237th ECS Meeting with the 18th International Meeting on Chemical Sensors, IMCS 2020 - Montreal, Канада
Продолжительность: 10 мая 202014 мая 2020

Серия публикаций

НазваниеECS Transactions
Номер7
Том97
ISSN (печатное издание)1938-6737
ISSN (электронное издание)1938-5862

Конференция

Конференция237th ECS Meeting with the 18th International Meeting on Chemical Sensors, IMCS 2020
Страна/TерриторияКанада
ГородMontreal
Период10/05/2014/05/20

Fingerprint

Подробные сведения о темах исследования «Oxygen Reduction Reaction Mechanism Study Via the Mean-Field Microkinetic Modeling and Uncertainty Quantification of Model Parameters». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать