Online energy management of electric vehicle parking-lots

Arman Alahyari, David Pozo, Mohammad Ali Sadri

Результат исследований: Глава в книге, отчете, сборнике статейМатериалы для конференциирецензирование

2 Цитирования (Scopus)

Аннотация

Electric vehicles (EV) charging scheduling in parking lots has been a hot topic in recent years. Instead of simply starting the charging process with the entrance of the EVs, a parking lot operator can decrease the cost of buying electricity in real-time, when prices are low. However, this decision-making process involves randomness in both price and EVs behavior (arrival and departure times). In this study, we introduce a supervised machine learning framework using a multi-layer perceptron regression that can train an online estimator to help the operator with the aforementioned process. This online estimator uses a small set of historical data and provides values of the amount of energy that should be bought by the operator. We use this method in the online management of EVs within parking-lots and evaluate the performance with a real-world EVs' charging data.

Язык оригиналаАнглийский
Название основной публикацииSEST 2020 - 3rd International Conference on Smart Energy Systems and Technologies
ИздательInstitute of Electrical and Electronics Engineers Inc.
ISBN (электронное издание)9781728147017
DOI
СостояниеОпубликовано - сент. 2020
Событие3rd International Conference on Smart Energy Systems and Technologies, SEST 2020 - Virtual, Istanbul, Турция
Продолжительность: 7 сент. 20209 сент. 2020

Серия публикаций

НазваниеSEST 2020 - 3rd International Conference on Smart Energy Systems and Technologies

Конференция

Конференция3rd International Conference on Smart Energy Systems and Technologies, SEST 2020
Страна/TерриторияТурция
ГородVirtual, Istanbul
Период7/09/209/09/20

Fingerprint

Подробные сведения о темах исследования «Online energy management of electric vehicle parking-lots». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать