On the number of excursion sets of planar Gaussian fields

Dmitry Beliaev, Michael McAuley, Stephen Muirhead

Результат исследований: Вклад в журналСтатьярецензирование

4 Цитирования (Scopus)


The Nazarov–Sodin constant describes the average number of nodal set components of smooth Gaussian fields on large scales. We generalise this to a functional describing the corresponding number of level set components for arbitrary levels. Using results from Morse theory, we express this functional as an integral over the level densities of different types of critical points, and as a result deduce the absolute continuity of the functional as the level varies. We further give upper and lower bounds showing that the functional is at least bimodal for certain isotropic fields, including the important special case of the random plane wave.

Язык оригиналаАнглийский
Страницы (с-по)655-698
Число страниц44
ЖурналProbability Theory and Related Fields
Номер выпуска3-4
СостояниеОпубликовано - 1 дек. 2020
Опубликовано для внешнего пользованияДа


Подробные сведения о темах исследования «On the number of excursion sets of planar Gaussian fields». Вместе они формируют уникальный семантический отпечаток (fingerprint).