On-line algorithm for blind signal extraction of arbitrarily distributed, but temporally correlated sources using second order statistics

Andrzej Cichocki, Ruck Thawonmas

Результат исследований: Вклад в журналСтатьярецензирование

59 Цитирования (Scopus)

Аннотация

Most of the algorithms for blind separation/extraction and independent component analysis (ICA) can not separate mixtures of sources with extremely low kurtosis or colored Gaussian sources. Moreover, to separate mixtures of super- and sub-Gaussian signals, it is necessary to use adaptive (time-variable) or switching nonlinearities which are controlled via computationally intensive measures, such as estimation of the sign of kurtosis of extracted signals. In this paper, we develop a very simple neural network model and an efficient on-line adaptive algorithm that sequentially extract temporally correlated sources with arbitrary distributions, including colored Gaussian sources and sources with extremely low values (or even zero) of kurtosis. The validity and performance of the algorithm have been confirmed by extensive computer simulation experiments.

Язык оригиналаАнглийский
Страницы (с-по)91-98
Число страниц8
ЖурналNeural Processing Letters
Том12
Номер выпуска1
DOI
СостояниеОпубликовано - авг. 2000
Опубликовано для внешнего пользованияДа

Fingerprint

Подробные сведения о темах исследования «On-line algorithm for blind signal extraction of arbitrarily distributed, but temporally correlated sources using second order statistics». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать