On hyperplane sections of K3 surfaces

Enrico Arbarello, Andrea Bruno, Edoardo Sernesi

Результат исследований: Вклад в журналСтатьярецензирование

14 Цитирования (Scopus)


Let C be a Brill-Noether-Petri curve of genus g ≥ 12. We prove that C lies on a polarised K3 surface, or on a limit thereof, if and only if the Gauss-Wahl map for C is not surjective. The proof is obtained by studying the validity of two conjectures by J. Wahl. Let IC be the ideal sheaf of a non-hyperelliptic, genus g, canonical curve. The first conjecture states that if g ≥ 8 and if the Clifford index of C is greater than 2, then H1(Pg-1,IC2 (k)) = 0 for k ≥ 3. We prove this conjecture for g ≥ 11. The second conjecture states that a Brill-Noether-Petri curve of genus g ≥ 12 is extendable if and only if C lies on a K3 surface. As observed in the introduction, the correct version of this conjecture should admit limits of polarised K3 surfaces in its statement. This is what we prove in the present work.

Язык оригиналаАнглийский
Страницы (с-по)562-596
Число страниц35
ЖурналAlgebraic Geometry
Номер выпуска5
СостояниеОпубликовано - 1 нояб. 2017
Опубликовано для внешнего пользованияДа


Подробные сведения о темах исследования «On hyperplane sections of K3 surfaces». Вместе они формируют уникальный семантический отпечаток (fingerprint).