On closed-loop stability of model predictive controllers with learning costs

Lukas Beckenbach, Pavel Osinenko, Stefan Streif

Результат исследований: Глава в книге, отчете, сборнике статейМатериалы для конференциирецензирование

Аннотация

Model predictive controllers are commonly associated with a fixed running and/or terminal cost function. Recently, some possibilities of cost function adaptation inspired by reinforcement learning were investigated. The current study analyzes closed-loop stability of such controllers in a general way. It is shown what constraints on learned running and terminal cost are required for this sake. A particular feature of the suggested control scheme is that, unlike in some common model predictive controllers, an assumed local Lyapunov function does not have to satisfy a decay function not less than the running cost. Relation of the considered control scheme to a baseline model predictive controller and adaptive dynamic programming is discussed. In a case study, it is shown how different cost function adaptation schemes lead to different performance with respect to the infinite-horizon cost.

Язык оригиналаАнглийский
Название основной публикацииEuropean Control Conference 2020, ECC 2020
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы184-189
Число страниц6
ISBN (электронное издание)9783907144015
СостояниеОпубликовано - мая 2020
Опубликовано для внешнего пользованияДа
Событие18th European Control Conference, ECC 2020 - Saint Petersburg, Российская Федерация
Продолжительность: 12 мая 202015 мая 2020

Серия публикаций

НазваниеEuropean Control Conference 2020, ECC 2020

Конференция

Конференция18th European Control Conference, ECC 2020
Страна/TерриторияРоссийская Федерация
ГородSaint Petersburg
Период12/05/2015/05/20

Fingerprint

Подробные сведения о темах исследования «On closed-loop stability of model predictive controllers with learning costs». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать