Nonlinear blind source separation using higher order statistics and a genetic algorithm

Ying Tan, Jun Wang

Результат исследований: Вклад в журналСтатьярецензирование

67 Цитирования (Scopus)


Demixing independent source signals from their nonlinear mixtures is a very important issue in many scenarios. This paper presents a novel method for blindly separating unobservable independent source signals from their nonlinear mixtures. The demixing system is modeled using a parameterized neural network whose parameters can be determined under the criterion of independence of its outputs. Two cost functions based on higher order statistics are established to measure the statistical dependence of the outputs of the demixing system. The proposed method utilizes a genetic algorithm (GA) to minimize the highly nonlinear and nonconvex cost functions. The GA-based global optimization technique is able to obtain superior separation solutions to the nonlinear blind separation problem from any random initial values. Compared to conventional gradient-based approaches, the GA-based approach for blind source separation is characterized by high accuracy, robustness, and convergence rate. In particular, it is very suitable for the case of limited available data. Simulation results are discussed to demonstrate that the proposed GA-based approach is capable of separating independent sources from their nonlinear mixtures generated by a parametric separation model.

Язык оригиналаАнглийский
Страницы (с-по)600-612
Число страниц13
ЖурналIEEE Transactions on Evolutionary Computation
Номер выпуска6
СостояниеОпубликовано - дек. 2001
Опубликовано для внешнего пользованияДа


Подробные сведения о темах исследования «Nonlinear blind source separation using higher order statistics and a genetic algorithm». Вместе они формируют уникальный семантический отпечаток (fingerprint).