Non-Ideal Linear Operation Model for Li-Ion Batteries

Alvaro Jose Gonzalez-Castellanos, David Pozo, Aldo Bischi

Результат исследований: Вклад в журналСтатьярецензирование

23 Цитирования (Scopus)


Currently, the characterization of electric energy storage units used for power system operation and planning models relies on two major assumptions: charge and discharge efficiencies, and power limits are constant and independent of the electric energy storage state of charge. This approach can misestimate the available storage flexibility. This work proposes a detailed model for the characterization of steady-state operation of Li-ion batteries in optimization problems. The model characterizes the battery performance, including non-linear charge and discharge power limits and efficiencies, as a function of the state of charge and requested power. We then derive a linear reformulation of the model without introducing binary variables, which achieves high computational efficiency, while providing high approximation accuracy. The proposed model characterizes more accurately the performance and technical operational limits associated with Li-ion batteries than those present in classical ideal models. The developed battery model has been compared with three modelling approaches: the complete non-convex formulation; an ideal model typically used in the power system community; and a mixed integer linear reformulation approach. The models have been tested on a network-constrained economic dispatch for a 24-bus system. Based on the simulations, we observed approximately 12% of energy mismatches between schedules that use an ideal model and those that use the model proposed in this study.

Язык оригиналаАнглийский
Номер статьи8770143
Страницы (с-по)672-682
Число страниц11
ЖурналIEEE Transactions on Power Systems
Номер выпуска1
СостояниеОпубликовано - янв. 2020


Подробные сведения о темах исследования «Non-Ideal Linear Operation Model for Li-Ion Batteries». Вместе они формируют уникальный семантический отпечаток (fingerprint).