Neural networks for topology optimization

Ivan Sosnovik, Ivan Oseledets

    Результат исследований: Вклад в журналСтатьярецензирование

    71 Цитирования (Scopus)

    Аннотация

    In this research, we propose a deep learning based approach for speeding up the topology optimization methods. The problem we seek to solve is the layout problem. The main novelty of this work is to state the problem as an image segmentation task. We leverage the power of deep learning methods as the efficient pixel-wise image labeling technique to perform the topology optimization. We introduce convolutional encoder-decoder architecture and the overall approach of solving the above-described problem with high performance. The conducted experiments demonstrate the significant acceleration of the optimization process. The proposed approach has excellent generalization properties. We demonstrate the ability of the application of the proposed model to other problems. The successful results, as well as the drawbacks of the current method, are discussed.

    Язык оригиналаАнглийский
    Страницы (с-по)215-223
    Число страниц9
    ЖурналRussian Journal of Numerical Analysis and Mathematical Modelling
    Том34
    Номер выпуска4
    DOI
    СостояниеОпубликовано - 1 авг. 2019

    Fingerprint

    Подробные сведения о темах исследования «Neural networks for topology optimization». Вместе они формируют уникальный семантический отпечаток (fingerprint).

    Цитировать