Multilinear tensor rank estimation via Sparse Tucker Decomposition

Tatsuya Yokota, Andrzej Cichocki

Результат исследований: Глава в книге, отчете, сборнике статейМатериалы для конференциирецензирование

16 Цитирования (Scopus)

Аннотация

When we apply techniques of Tucker based tensor decomposition to approximate a given tensor data as a low-rank model, appropriate multi-linear tensor rank is often unknown. In such cases, we have to tune this multi-linear tensor rank from a number of combinations. In this paper, we propose a new algorithm for sparse Tucker decomposition which estimates appropriate multilinear tensor rank of the given data. In this method, we imposed orthogonal constraint into the basis matrices and sparse constraint into the core tensor, and try to prune wasted components by maximizing the sparsity of the core tensor under the condition of error bound. Thus, we call this method as the 'Pruning Sparse Tucker Decomposition' (PSTD). The PSTD is very useful for estimating the appropriate multilinear tensor rank of the Tucker based sparse representation such as compression. We demonstrate several experiments of the proposed method to show its advantages.

Язык оригиналаАнглийский
Название основной публикации2014 Joint 7th International Conference on Soft Computing and Intelligent Systems, SCIS 2014 and 15th International Symposium on Advanced Intelligent Systems, ISIS 2014
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы478-483
Число страниц6
ISBN (электронное издание)9781479959556
DOI
СостояниеОпубликовано - 18 февр. 2014
Опубликовано для внешнего пользованияДа
Событие2014 Joint 7th International Conference on Soft Computing and Intelligent Systems, SCIS 2014 and 15th International Symposium on Advanced Intelligent Systems, ISIS 2014 - Kitakyushu, Япония
Продолжительность: 3 дек. 20146 дек. 2014

Серия публикаций

Название2014 Joint 7th International Conference on Soft Computing and Intelligent Systems, SCIS 2014 and 15th International Symposium on Advanced Intelligent Systems, ISIS 2014

Конференция

Конференция2014 Joint 7th International Conference on Soft Computing and Intelligent Systems, SCIS 2014 and 15th International Symposium on Advanced Intelligent Systems, ISIS 2014
Страна/TерриторияЯпония
ГородKitakyushu
Период3/12/146/12/14

Fingerprint

Подробные сведения о темах исследования «Multilinear tensor rank estimation via Sparse Tucker Decomposition». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать