Mean conservation of nodal volume and connectivity measures for Gaussian ensembles

Dmitry Beliaev, Stephen Muirhead, Igor Wigman

Результат исследований: Вклад в журналСтатьярецензирование

Аннотация

We study in depth the nesting graph and volume distribution of the nodal domains of a Gaussian field, which have been shown in previous works to exhibit asymptotic laws. A striking link is established between the asymptotic mean connectivity of a nodal domain (i.e. the vertex degree in its nesting graph) and the positivity of the percolation probability of the field, along with a direct dependence of the average nodal volume on the percolation probability. Our results support the prevailing ansatz that the mean connectivity and volume of a nodal domain is conserved for generic random fields in dimension d=2 but not in d≥3, and are applied to a number of concrete motivating examples.

Язык оригиналаАнглийский
Номер статьи107521
ЖурналAdvances in Mathematics
Том378
DOI
СостояниеОпубликовано - 12 февр. 2021
Опубликовано для внешнего пользованияДа

Fingerprint

Подробные сведения о темах исследования «Mean conservation of nodal volume and connectivity measures for Gaussian ensembles». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать