Low-rank retractions: a survey and new results

P. A. Absil, I. V. Oseledets

    Результат исследований: Вклад в журналСтатьярецензирование

    25 Цитирования (Scopus)

    Аннотация

    Retractions are a prevalent tool in Riemannian optimization that provides a way to smoothly select a curve on a manifold with given initial position and velocity. We review and propose several retractions on the manifold Mr of rank-r m×n matrices. With the exception of the exponential retraction (for the embedded geometry), which is clearly the least efficient choice, the retractions considered do not differ much in terms of run time and flop count. However, considerable differences are observed according to properties such as domain of definition, boundedness, first/second-order property, and symmetry.

    Язык оригиналаАнглийский
    Страницы (с-по)5-29
    Число страниц25
    ЖурналComputational Optimization and Applications
    Том62
    Номер выпуска1
    DOI
    СостояниеОпубликовано - 21 сент. 2015

    Fingerprint

    Подробные сведения о темах исследования «Low-rank retractions: a survey and new results». Вместе они формируют уникальный семантический отпечаток (fingerprint).

    Цитировать