Learning to control a brain-machine interface for reaching and grasping by primates

Jose M. Carmena, Mikhail A. Lebedev, Roy E. Crist, Joseph E. O'Doherty, David M. Santucci, Dragan F. Dimitrov, Parag G. Patil, Craig S. Henriquez, Miguel A.L. Nicolelis

Результат исследований: Вклад в журналСтатьярецензирование

1308 Цитирования (Scopus)

Аннотация

Reaching and grasping in primates depend on the coordination of neural activity in large frontoparietal ensembles. Here we demonstrate that primates can learn to reach and grasp virtual objects by controlling a robot arm through a closed-loop brain-machine interface (BMIc) that uses multiple mathematical models to extract several motor parameters (i.e., hand position, velocity, gripping force, and the EMGs of multiple arm muscles) from the electrical activity of frontoparietal neuronal ensembles. As single neurons typically contribute to the encoding of several motor parameters, we observed that high BMIc accuracy required recording from large neuronal ensembles. Continuous BMIc operation by monkeys led to significant improvements in both model predictions and behavioral performance. Using visual feedback, monkeys succeeded in producing robot reach-and-grasp movements even when their arms did not move. Learning to operate the BMIc was paralleled by functional reorganization in multiple cortical areas, suggesting that the dynamic properties of the BMIc were incorporated into motor and sensory cortical representations.

Язык оригиналаАнглийский
ЖурналPLoS Biology
Том1
Номер выпуска2
DOI
СостояниеОпубликовано - 2003
Опубликовано для внешнего пользованияДа

Fingerprint

Подробные сведения о темах исследования «Learning to control a brain-machine interface for reaching and grasping by primates». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать