Keypoints Localization for Joint Vertebra Detection and Fracture Severity Quantification

Maxim Pisov, Vladimir Kondratenko, Alexey Zakharov, Alexey Petraikin, Victor Gombolevskiy, Sergey Morozov, Mikhail Belyaev

Результат исследований: Глава в книге, отчете, сборнике статейМатериалы для конференциирецензирование

7 Цитирования (Scopus)

Аннотация

Vertebral body compression fractures are reliable early signs of osteoporosis. Though these fractures are visible on Computed Tomography (CT) images, they are frequently missed by radiologists in clinical settings. Prior research on automatic methods of vertebral fracture classification proves its reliable quality; however, existing methods provide hard-to-interpret outputs and sometimes fail to process cases with severe abnormalities such as highly pathological vertebrae or scoliosis. We propose a new two-step algorithm to localize the vertebral column in 3D CT images and then to simultaneously detect individual vertebrae and quantify fractures in 2D. We train neural networks for both steps using a simple 6-keypoints based annotation scheme, which corresponds precisely to current medical recommendations. Our algorithm has no exclusion criteria, processes 3D CT in 2 s on a single GPU and provides an intuitive and verifiable output. The method approaches expert-level performance and demonstrates state-of-the-art results in vertebrae 3D localization (the average error is 1 mm), vertebrae 2D detection (precision is 0.99, recall is 1), and fracture identification (ROC AUC at the patient level is 0.93).

Язык оригиналаАнглийский
Название основной публикацииMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
РедакторыAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
ИздательSpringer Science and Business Media Deutschland GmbH
Страницы723-732
Число страниц10
ISBN (печатное издание)9783030597245
DOI
СостояниеОпубликовано - 2020
Событие23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Перу
Продолжительность: 4 окт. 20208 окт. 2020

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том12266 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

Конференция

Конференция23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
Страна/TерриторияПеру
ГородLima
Период4/10/208/10/20

Fingerprint

Подробные сведения о темах исследования «Keypoints Localization for Joint Vertebra Detection and Fracture Severity Quantification». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать