Growth processes related to the dispersionless Lax equations

Результат исследований: Вклад в журналСтатьярецензирование

9 Цитирования (Scopus)


This paper is a short review of the connection between certain types of growth processes and the integrable systems theory, written from the viewpoint of the latter. Starting from the dispersionless Lax equations for the 2D Toda hierarchy, we interpret them as evolution equations for conformal maps in the plane. This provides a unified approach to evolution of smooth domains (such as Laplacian growth) and growth of slits. We show that the Löwner differential equation for a parametric family of conformal maps of slit domains arises as a consistency condition for reductions of the dispersionless Toda hierarchy. It is also demonstrated how the both types of growth processes can be simulated by the large N limit of the Dyson gas picture for the model of normal random matrices.

Язык оригиналаАнглийский
Страницы (с-по)101-108
Число страниц8
ЖурналPhysica D: Nonlinear Phenomena
Номер выпуска1-2 SPEC. ISS.
СостояниеОпубликовано - нояб. 2007
Опубликовано для внешнего пользованияДа


Подробные сведения о темах исследования «Growth processes related to the dispersionless Lax equations». Вместе они формируют уникальный семантический отпечаток (fingerprint).