Extreme-value statistics of work done in stretching a polymer in a gradient flow

M. Vucelja, K. S. Turitsyn, M. Chertkov

Результат исследований: Вклад в журналСтатьярецензирование

2 Цитирования (Scopus)

Аннотация

We analyze the statistics of work generated by a gradient flow to stretch a nonlinear polymer. We obtain the large deviation function (LDF) of the work in the full range of appropriate parameters by combining analytical and numerical tools. The LDF shows two distinct asymptotes: "near tails" are linear in work and dominated by coiled polymer configurations, while "far tails" are quadratic in work and correspond to preferentially fully stretched polymers. We find the extreme value statistics of work for several singular elastic potentials, as well as the mean and the dispersion of work near the coil-stretch transition. The dispersion shows a maximum at the transition.

Язык оригиналаАнглийский
Номер статьи022123
ЖурналPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Том91
Номер выпуска2
DOI
СостояниеОпубликовано - 17 февр. 2015
Опубликовано для внешнего пользованияДа

Fingerprint

Подробные сведения о темах исследования «Extreme-value statistics of work done in stretching a polymer in a gradient flow». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать