Exponential machines

A. Novikov, M. Trofimov, I. Oseledets

    Результат исследований: Вклад в журналСтатьярецензирование

    9 Цитирования (Scopus)

    Аннотация

    Modeling interactions between features improves the performance of machine learning solutions in many domains (e.g. recommender systems or sentiment analysis). In this paper, we introduce Exponential machines (ExM), a predictor that models all interactions of every order. The key idea is to represent an exponentially large tensor of parameters in a factorized format called tensor train (TT). The tensor train format regularizes the model and lets you control the number of underlying parameters. To train the model, we develop a stochastic Riemannian optimization procedure, which allows us to fit tensors with ¼ 2 56 entries. We show that the model achieves state-of-the-art performance on synthetic data with high-order interactions and that it works on par with high-order factorization machines on a recommender system dataset MovieLens 100 K.

    Язык оригиналаАнглийский
    Страницы (с-по)789-797
    Число страниц9
    ЖурналBulletin of the Polish Academy of Sciences: Technical Sciences
    DOI
    СостояниеОпубликовано - 2018

    Fingerprint

    Подробные сведения о темах исследования «Exponential machines». Вместе они формируют уникальный семантический отпечаток (fingerprint).

    Цитировать