Exploring classification algorithms for early mission formulation cost estimation

Marc Sanchez Net, Daniel Selva, Alessandro Golkar

Результат исследований: Глава в книге, отчете, сборнике статейМатериалы для конференциирецензирование

2 Цитирования (Scopus)

Аннотация

Current cost estimation methods for early mission formulation typically use parametric regressions and analogies based on historical data sets. This approach, while widely spread in industry, is also subject to critique due to large parameter uncertainty and due to the reliance on small data sets on which regressions are based. Issues are accentuated in early mission formulation efforts, due to the immaturity of the mission concept and technical data available in preliminary design phases. In other words, conventional cost estimation methods sometimes have too high ambitions for the quantity of the information available in early mission formulation. Yet, cost estimation is of primary importance to determine feasibility of a mission within a space program. In this paper, we explore less ambitious approaches based on machine learning algorithms that are better suited to cost estimation for early mission formulation. In particular, we use classification algorithms to categorize missions into a predefined number of cost classes, e.g. Discovery or Flagship mission class. We compare different classification algorithms, study the performance and the utility of different levels of granularity in class definition, and test the proposed approaches on selected Earth Observation missions for which public information on cost is available. The methodology proposed in this paper provides an alternative approach for early cost estimation of new missions to cost and systems engineers.

Язык оригиналаАнглийский
Название основной публикации2014 IEEE Aerospace Conference
ИздательIEEE Computer Society
ISBN (печатное издание)9781479916221
DOI
СостояниеОпубликовано - 2014
Событие2014 IEEE Aerospace Conference - Big Sky, MT, Соединенные Штаты Америки
Продолжительность: 1 мар. 20148 мар. 2014

Серия публикаций

НазваниеIEEE Aerospace Conference Proceedings
ISSN (печатное издание)1095-323X

Конференция

Конференция2014 IEEE Aerospace Conference
Страна/TерриторияСоединенные Штаты Америки
ГородBig Sky, MT
Период1/03/148/03/14

Fingerprint

Подробные сведения о темах исследования «Exploring classification algorithms for early mission formulation cost estimation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать