Efficient euclidean distance transform using perpendicular bisector segmentation

Jun Wang, Ying Tan

Результат исследований: Глава в книге, отчете, сборнике статейМатериалы для конференциирецензирование

7 Цитирования (Scopus)

Аннотация

In this paper, we propose an efficient algorithm for computing the Euclidean distance transform of two-dimensional binary image, called PBEDT (Perpendicular Bisector Euclidean Distance Transform). PBEDT is a two-stage independent scan algorithm. In the first stage, PBEDT computes the distance from each point to its closest feature point in the same column using one time column-wise scan. In the second stage, PBEDT computes the distance transform for each point by row with intermediate results of the previous stage. By using the geometric properties of the perpendicular bisector, PBEDT directly computes the segmentation by feature points for each row and each segment corresponding to one feature point. Furthermore, by using integer arithmetic to avoid time consuming float operations, PBEDT still achieves exact results. All these methods reduce the computational complexity significantly. Consequently, an efficient and exact linear time Euclidean distance transform algorithm is implemented. Detailed comparison with state-of-the-art linear time Euclidean distance transform algorithms shows that PBEDT is the fastest on most cases, and also the most stable one with respect to image contents.

Язык оригиналаАнглийский
Название основной публикации2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011
ИздательIEEE Computer Society
Страницы1625-1632
Число страниц8
ISBN (печатное издание)9781457703942
DOI
СостояниеОпубликовано - 2011
Опубликовано для внешнего пользованияДа

Серия публикаций

НазваниеProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (печатное издание)1063-6919

Fingerprint

Подробные сведения о темах исследования «Efficient euclidean distance transform using perpendicular bisector segmentation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать