DeepXPalm: Tilt and Position Rendering using Palm-worn Haptic Display and CNN-based Tactile Pattern Recognition

Miguel Altamirano Cabrera, Oleg Sautenkov, Jonathan Tirado, Aleksey Fedoseev, Pavel Kopanev, Hiroyuki Kajimoto, Dzmitry Tsetserukou

    Результат исследований: Глава в книге, отчете, сборнике статейМатериалы для конференциирецензирование

    1 Цитирования (Scopus)

    Аннотация

    Telemanipulation of deformable objects requires high precision and dexterity from the users, which can be increased by kinesthetic and tactile feedback. However, the object shape can change dynamically, causing ambiguous perception of its alignment and hence errors in the robot positioning. Therefore, recognize the tilt angle and position patterns sensed over the gripper fingertip is a classification problem that has to be solved to present a clear tactile pattern to the user. This work presents a telemanipulation system for plastic pipettes consisting of a multi-contact haptic interface LinkGlide to deliver haptic feedback at the users' palm and two tactile sensors array embedded in the 2-finger Robotiq gripper. We propose a novel approach based on Convolutional Neural Networks (CNN) to detect the tilt and position while grasping deformable objects. The CNN generates a mask based on recognized tilt and position data to render further multi-contact tactile stimuli provided to the user during the telemanipulation. The study has shown that using the CNN algorithm and the preset mask, tilt, and position recognition by users is increased from 9.67% using the direct data to 82.5%.

    Язык оригиналаАнглийский
    Название основной публикации2022 IEEE Haptics Symposium, HAPTICS 2022
    ИздательIEEE Computer Society
    ISBN (электронное издание)9781665420297
    DOI
    СостояниеОпубликовано - 2022
    Событие27th IEEE Haptics Symposium, HAPTICS 2022 - Virtual, Online, Соединенные Штаты Америки
    Продолжительность: 21 мар. 202224 мар. 2022

    Серия публикаций

    НазваниеIEEE Haptics Symposium, HAPTICS
    Том2022-March
    ISSN (печатное издание)2324-7347
    ISSN (электронное издание)2324-7355

    Конференция

    Конференция27th IEEE Haptics Symposium, HAPTICS 2022
    Страна/TерриторияСоединенные Штаты Америки
    ГородVirtual, Online
    Период21/03/2224/03/22

    Fingerprint

    Подробные сведения о темах исследования «DeepXPalm: Tilt and Position Rendering using Palm-worn Haptic Display and CNN-based Tactile Pattern Recognition». Вместе они формируют уникальный семантический отпечаток (fingerprint).

    Цитировать