Completely analytical interactions: Constructive description

R. L. Dobrushin, S. B. Shlosman

Результат исследований: Вклад в журналСтатьярецензирование

106 Цитирования (Scopus)

Аннотация

An interaction U is called a completely analytical (CA) interaction, if it satisfies one of 12 given conditions formulated in terms of analyticity properties of the partition functions Zv(u), or correlation decay, or truncated correlation bounds, or asymptotic behavior of ln Zv(u), v→∞. The 12 conditions are presented, together with part of the proof of their equivalence. The main result of the paper is that each condition is constructive in the following sense: instead of checking it in all finite volumes v⊂ℤv, it is enough to consider only (a finite amount of) volumes with restricted size. In particular, the partition functions Zv(u+ũ) for the complex perturbations u+ũ of u do not vanish for all Vℤv and all Ũ with ∥Ũ∥<e{open}, provided this is true only for v with diam v≤C(e{open}) and ∥Ũ∥<e{open}′ (but with e{open}<e{open}′).

Язык оригиналаАнглийский
Страницы (с-по)983-1014
Число страниц32
ЖурналJournal of Statistical Physics
Том46
Номер выпуска5-6
DOI
СостояниеОпубликовано - мар. 1987
Опубликовано для внешнего пользованияДа

Fingerprint

Подробные сведения о темах исследования «Completely analytical interactions: Constructive description». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать