Combinatorial expansions of conformal blocks

A. V. Marshakov, A. D. Mironov, A. Yu Morozov

Результат исследований: Вклад в журналСтатьярецензирование

34 Цитирования (Scopus)


A representation of Nekrasov partition functions in terms of a nontrivial two-dimensional conformal field theory was recently suggested. For a nonzero value of the deformation parameter ∈ = ∈1+ ∈2, the instanton partition function is identified with a conformal block of the Liouville theory with the central charge c = 1 + 6∈2/∈12. The converse of this observation means that the universal part of conformal blocks, which is the same for all two-dimensional conformal theories with nondegenerate Virasoro representations, has a nontrivial decomposition into a sum over Young diagrams that differs from the natural decomposition studied in conformal field theory. We provide some details about this new nontrivial correspondence in the simplest case of the four-point correlation functions.

Язык оригиналаАнглийский
Страницы (с-по)831-852
Число страниц22
ЖурналTheoretical and Mathematical Physics
Номер выпуска1
СостояниеОпубликовано - 2010
Опубликовано для внешнего пользованияДа


Подробные сведения о темах исследования «Combinatorial expansions of conformal blocks». Вместе они формируют уникальный семантический отпечаток (fingerprint).