Artificial neural networks versus natural neural networks. A connectionist paradigm for preference assessment

Jun Wang

Результат исследований: Вклад в журналСтатьярецензирование

14 Цитирования (Scopus)

Аннотация

Preference is an essential ingredient in all decision processes. This paper presents a new connectionist paradigm for preference assessment in a general multicriteria decision setting. A general structure of an artificial neural network for representing two specified prototypes of preference structures is discussed. An interactive preference assessment procedure and an autonomous learning algorithm based on a novel scheme of supervised learning are proposed. Operating characteristics of the proposed paradigm are also illustrated through detailed results of numerical simulations.

Язык оригиналаАнглийский
Страницы (с-по)415-429
Число страниц15
ЖурналDecision Support Systems
Том11
Номер выпуска5
DOI
СостояниеОпубликовано - июн. 1994
Опубликовано для внешнего пользованияДа

Fingerprint

Подробные сведения о темах исследования «Artificial neural networks versus natural neural networks. A connectionist paradigm for preference assessment». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать