Acoustic emissions monitoring during inelastic deformation of porous sandstone: Comparison of three modes of deformation

Jerome Fortin, Sergei Stanchits, Georg Dresen, Yves Gueguen

Результат исследований: Вклад в журналСтатьярецензирование

106 Цитирования (Scopus)


In some reservoirs, large deformations can occur during oil or gas production because of the effective stress change. For very porous rocks, these production operations can be sufficient to cause inelastic deformation and irreversible damage. Rock formations can undergo deformation by different mechanisms, including dilatancy or pore collapse. In the laboratory, it has been shown that the inelastic deformation and failure mode of porous rocks are pressure sensitive. Indeed, when subjected to an overall compressive loading, a porous rock may fail by shear localization, compaction localization, or by cataclastic compaction. Acoustic emission (AE) records provide important information to understand the failure mode of rocks: the spatial evolution of damage as well as the source mechanisms can be followed using this technique. In this paper, we present three different laboratory axisymmetric compression experiments, performed on Bleurswiller sandstone, which enable us to compare the acoustic emission signature of these three modes of deformation. Our data show that compaction localization and cataclastic compaction are characterized by similar acoustic signatures (in terms of AE sources characteristics and evolution of AE number), in comparison to the acoustic signature from shear localization. This implies similar micromechanisms involved during compaction bands formation and cataclastic compaction.

Язык оригиналаАнглийский
Страницы (с-по)823-841
Число страниц19
ЖурналPure and Applied Geophysics
Номер выпуска5-7
СостояниеОпубликовано - 2009
Опубликовано для внешнего пользованияДа


Подробные сведения о темах исследования «Acoustic emissions monitoring during inelastic deformation of porous sandstone: Comparison of three modes of deformation». Вместе они формируют уникальный семантический отпечаток (fingerprint).