A statistical model of aggregate fragmentation

F. Spahn, E. Vieira Neto, A. H.F. Guimarães, A. N. Gorban, N. V. Brilliantov

Результат исследований: Вклад в журналСтатьярецензирование

13 Цитирования (Scopus)

Аннотация

A statistical model of fragmentation of aggregates is proposed, based on the stochastic propagation of cracks through the body. The propagation rules are formulated on a lattice and mimic two important features of the process - a crack moves against the stress gradient while dissipating energy during its growth. We perform numerical simulations of the model for two-dimensional lattice and reveal that the mass distribution for small- and intermediate-size fragments obeys a power law, F(m)∝m-3/2, in agreement with experimental observations. We develop an analytical theory which explains the detected power law and demonstrate that the overall fragment mass distribution in our model agrees qualitatively with that one observed in experiments.

Язык оригиналаАнглийский
Номер статьи013031
ЖурналNew Journal of Physics
Том16
DOI
СостояниеОпубликовано - янв. 2014
Опубликовано для внешнего пользованияДа

Fingerprint

Подробные сведения о темах исследования «A statistical model of aggregate fragmentation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать