A recurrent neural network for global asymptotic tracking control of disturbed nonlinear systems

Danchi Jiang, Jun Wang

Результат исследований: Глава в книге, отчете, сборнике статейМатериалы для конференциирецензирование


In this paper we present a recurrent neural network for global asymptotic tracking control of discrete-time time-varying nonlinear affine systems with disturbances. The objective is to control the system so that its output can track, from any initial point, an exogenous reference output generated by a known time-varying dynamics. First, we extend the dissipative inequality to a composite system combining the original system and the exogenous reference system. This composite system is not required to have an equilibrium point. Then, by choosing an appropriate time-varying quadratic storage function, the extended dissipative inequality leads to a group of linear matrix inequalities. This group of linear matrix inequalities is mapped to several convex optimization problems. To solve these convex optimization problems, a gradient flow system is developed. In addition, an augmented gradient flow system is carefully proposed to avoid the complicated computation of matrix inverses. A recurrent neural network is designed to realize this augmented gradient flow. At each time step, the recurrent neural network generates a desired control input based on the present state and the system model. The effectiveness and characteristics of the proposed neural controller are demonstrated by simulation results.

Язык оригиналаАнглийский
Название основной публикацииProceedings of the 1998 American Control Conference, ACC 1998
Число страниц5
СостояниеОпубликовано - 1998
Опубликовано для внешнего пользованияДа
Событие1998 American Control Conference, ACC 1998 - Philadelphia, PA, Соединенные Штаты Америки
Продолжительность: 24 июн. 199826 июн. 1998

Серия публикаций

НазваниеProceedings of the American Control Conference
ISSN (печатное издание)0743-1619


Конференция1998 American Control Conference, ACC 1998
Страна/TерриторияСоединенные Штаты Америки
ГородPhiladelphia, PA


Подробные сведения о темах исследования «A recurrent neural network for global asymptotic tracking control of disturbed nonlinear systems». Вместе они формируют уникальный семантический отпечаток (fingerprint).