A Projection Neural Network for Constrained Quadratic Minimax Optimization

Qingshan Liu, Jun Wang

Результат исследований: Вклад в журналСтатьярецензирование

66 Цитирования (Scopus)

Аннотация

This paper presents a projection neural network described by a dynamic system for solving constrained quadratic minimax programming problems. Sufficient conditions based on a linear matrix inequality are provided for global convergence of the proposed neural network. Compared with some of the existing neural networks for quadratic minimax optimization, the proposed neural network in this paper is capable of solving more general constrained quadratic minimax optimization problems, and the designed neural network does not include any parameter. Moreover, the neural network has lower model complexities, the number of state variables of which is equal to that of the dimension of the optimization problems. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.

Язык оригиналаАнглийский
Номер статьи7103358
Страницы (с-по)2891-2900
Число страниц10
ЖурналIEEE Transactions on Neural Networks and Learning Systems
Том26
Номер выпуска11
DOI
СостояниеОпубликовано - 1 нояб. 2015
Опубликовано для внешнего пользованияДа

Fingerprint

Подробные сведения о темах исследования «A Projection Neural Network for Constrained Quadratic Minimax Optimization». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать