A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains

Lexing Ying, George Biros, Denis Zorin

Результат исследований: Вклад в журналСтатьярецензирование

92 Цитирования (Scopus)


We present a high-order boundary integral equation solver for 3D elliptic boundary value problems on domains with smooth boundaries. We use Nyström's method for discretization, and combine it with special quadrature rules for the singular kernels that appear in the boundary integrals. The overall asymptotic complexity of our method is O(N3/2), where N is the number of discretization points on the boundary of the domain, and corresponds to linear complexity in the number of uniformly sampled evaluation points. A kernel-independent fast summation algorithm is used to accelerate the evaluation of the discretized integral operators. We describe a high-order accurate method for evaluating the solution at arbitrary points inside the domain, including points close to the domain boundary. We demonstrate how our solver, combined with a regular-grid spectral solver, can be applied to problems with distributed sources. We present numerical results for the Stokes, Navier, and Poisson problems.

Язык оригиналаАнглийский
Страницы (с-по)247-275
Число страниц29
ЖурналJournal of Computational Physics
Номер выпуска1
СостояниеОпубликовано - 20 нояб. 2006
Опубликовано для внешнего пользованияДа


Подробные сведения о темах исследования «A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains». Вместе они формируют уникальный семантический отпечаток (fingerprint).