A fixed-point algorithm for independent component analysis which uses a priori information

Allan Kardec Barros, Andrzej Cichocki

Результат исследований: Глава в книге, отчете, сборнике статейМатериалы для конференциирецензирование

3 Цитирования (Scopus)

Аннотация

Independent component analysis is a powerful tool for separating signals from their mixtures. In this field, many algorithms have been proposed, but they poorly use a priori information in order to find the desired signal. Besides, they provide many outputs, from which we have to choose the one of interest. Here we propose a fixed point algorithm which uses a reference input to find the signal of interest. We applied the algorithm to electrocardiographic (ECG) interference cancellation. In simulations, the algorithm successfully found the desired component even if it was spectrally overlapped by the interference signals. Moreover, the algorithm was applied to an actual situation consisting of an eight channel ECG obtained from a pregnant woman. As a result, the algorithm could either obtain the ECG signal from the baby or from the mother by just changing one parameter: the fundamental frequency of the desired ECG.

Язык оригиналаАнглийский
Название основной публикацииProceedings - 5th Brazilian Symposium on Neural Networks, SBRN 1998
РедакторыAntonio de Padua Braga, Teresa Bernarda Ludermir
ИздательIEEE Computer Society
Страницы39-42
Число страниц4
ISBN (электронное издание)0818686294
DOI
СостояниеОпубликовано - 1998
Опубликовано для внешнего пользованияДа
Событие5th Brazilian Symposium on Neural Networks, SBRN 1998 - Belo Horizonte, Бразилия
Продолжительность: 9 дек. 199811 дек. 1998

Серия публикаций

НазваниеProceedings - Brazilian Symposium on Neural Networks, SBRN
ISSN (печатное издание)1522-4899

Конференция

Конференция5th Brazilian Symposium on Neural Networks, SBRN 1998
Страна/TерриторияБразилия
ГородBelo Horizonte
Период9/12/9811/12/98

Fingerprint

Подробные сведения о темах исследования «A fixed-point algorithm for independent component analysis which uses a priori information». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать