A Bi-Projection Neural Network for Solving Constrained Quadratic Optimization Problems

Youshen Xia, Jun Wang

Результат исследований: Вклад в журналСтатьярецензирование

90 Цитирования (Scopus)

Аннотация

In this paper, a bi-projection neural network for solving a class of constrained quadratic optimization problems is proposed. It is proved that the proposed neural network is globally stable in the sense of Lyapunov, and the output trajectory of the proposed neural network will converge globally to an optimal solution. Compared with existing projection neural networks (PNNs), the proposed neural network has a very small model size owing to its bi-projection structure. Furthermore, an application to data fusion shows that the proposed neural network is very effective. Numerical results demonstrate that the proposed neural network is much faster than the existing PNNs.

Язык оригиналаАнглийский
Номер статьи7349222
Страницы (с-по)214-224
Число страниц11
ЖурналIEEE Transactions on Neural Networks and Learning Systems
Том27
Номер выпуска2
DOI
СостояниеОпубликовано - февр. 2016
Опубликовано для внешнего пользованияДа

Fingerprint

Подробные сведения о темах исследования «A Bi-Projection Neural Network for Solving Constrained Quadratic Optimization Problems». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать