Visualization of dynamic brain activities based on the single-trial MEG and EEG data analysis

Jianting Cao, Liangyu Zhao, Andrzej Cichocki

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (SciVal)

Abstract

Treating an averaged evoked-fields (EFs) or event-related potentials (ERPs) data is a main approach in the topics on applying Independent Component Analysis (ICA) to neurobiological signal processing. By taking the average, the signal-noise ratio (SNR) is increased, however some important information such as the strength of an evoked response and its dynamics (trial-by-trial variations) will be lost. The single-trial data analysis, on the other hand, can avoid this problem but the poor SNR is necessary to be improved. This paper presents a robust multi-stage data analysis method for the single-trial Magnetoencephalograph (MEG) and Electroencephalograph (EEG) recorded data. In the pre-processing stage, a robust subspace method is firstly applied for reducing a high-level unique component (additive noise) in single-trial raw data. In the second stage, a parameterized t-distribution ICA method is applied for further decomposing the overlapped common components (sources). In the post-processing stage, the source localization or scalp mapping technique and post-averaging technique are applied for visualizing the dynamic brain activities. The results on single-trial MEG and EEG data analysis both illustrate the high performances not only in the visualization of the behavior and location but also in the visualization of the trial-by-trial variations of individual evoked brain response.

Original languageEnglish
Title of host publicationAdvances in Neural Networks - ISNN 2006
Subtitle of host publicationThird International Symposium on Neural Networks, ISNN 2006, Proceedings - Part III
PublisherSpringer Verlag
Pages531-540
Number of pages10
ISBN (Print)3540344829, 9783540344827
DOIs
Publication statusPublished - 2006
Externally publishedYes
Event3rd International Symposium on Neural Networks, ISNN 2006 - Advances in Neural Networks - Chengdu, China
Duration: 28 May 20061 Jun 2006

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume3973 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference3rd International Symposium on Neural Networks, ISNN 2006 - Advances in Neural Networks
Country/TerritoryChina
CityChengdu
Period28/05/061/06/06

Fingerprint

Dive into the research topics of 'Visualization of dynamic brain activities based on the single-trial MEG and EEG data analysis'. Together they form a unique fingerprint.

Cite this