TY - JOUR

T1 - Velocity distribution in granular gases of viscoelastic particles

AU - Brilliantov, Nikolai V.

AU - Pöschel, Thorsten

PY - 2000

Y1 - 2000

N2 - The velocity distribution in a homogeneously cooling granular gas has been studied in the viscoelastic regime, when the restitution coefficient of colliding particles depends on the impact velocity. We show that for viscoelastic particles a simple scaling hypothesis is violated, i.e., that the time dependence of the velocity distribution does not scale with the mean square velocity as in the case of particles interacting via a constant restitution coefficient. The deviation from the Maxwellian distribution does not depend on time monotonically. For the case of small dissipation we detected two regimes of evolution of the velocity distribution function: Starting from the initial Maxwellian distribution, the deviation first increases with time on a collision time scale saturating at some maximal value; then it decays to zero on a much larger time scale which corresponds to the temperature relaxation. For larger values of the dissipation parameter there appears an additional intermediate relaxation regime. Analytical calculations for small dissipation agree well with the results of a numerical analysis.

AB - The velocity distribution in a homogeneously cooling granular gas has been studied in the viscoelastic regime, when the restitution coefficient of colliding particles depends on the impact velocity. We show that for viscoelastic particles a simple scaling hypothesis is violated, i.e., that the time dependence of the velocity distribution does not scale with the mean square velocity as in the case of particles interacting via a constant restitution coefficient. The deviation from the Maxwellian distribution does not depend on time monotonically. For the case of small dissipation we detected two regimes of evolution of the velocity distribution function: Starting from the initial Maxwellian distribution, the deviation first increases with time on a collision time scale saturating at some maximal value; then it decays to zero on a much larger time scale which corresponds to the temperature relaxation. For larger values of the dissipation parameter there appears an additional intermediate relaxation regime. Analytical calculations for small dissipation agree well with the results of a numerical analysis.

UR - http://www.scopus.com/inward/record.url?scp=0008806444&partnerID=8YFLogxK

U2 - 10.1103/PhysRevE.61.5573

DO - 10.1103/PhysRevE.61.5573

M3 - Article

AN - SCOPUS:0008806444

VL - 61

SP - 5573

EP - 5587

JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

SN - 1539-3755

IS - 5

ER -