Understanding 2H/1H systematics of leaf wax n-alkanes in coastal plants at Stiffkey saltmarsh, Norfolk, UK

Yvette Eley, Lorna Dawson, Stuart Black, Julian Andrews, Nikolai Pedentchouk

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

Interpretation of sedimentary n-alkyl lipid δ2H data is complicated by a limited understanding of factors controlling interspecies variation in biomarker 2H/1H composition. To distinguish between the effects of interrelated environmental, physical and biochemical controls on the hydrogen isotope composition of n-alkyl lipids, we conducted linked δ2H analyses of soil water, xylem water, leaf water and n-alkanes from a range of C3 and C4 plants growing at a UK saltmarsh (i) across multiple sampling sites, (ii) throughout the 2012 growing season, and (iii) at different times of the day. Soil waters varied isotopically by up to 35‰ depending on marsh sub-environment, and exhibited site-specific seasonal shifts in δ2H up to a maximum of 31‰. Maximum interspecies variation in xylem water was 38‰, while leaf waters differed seasonally by a maximum of 29‰. Leaf wax n-alkane 2H/1H, however, consistently varied by over 100‰ throughout the 2012 growing season, resulting in an interspecies range in the εwax/leafwater values of -79‰ to -227‰. From the discrepancy in the magnitude of these isotopic differences, we conclude that mechanisms driving variation in the 2H/1H composition of leaf water, including (i) spatial changes in soil water 2H/1H, (ii) temporal changes in soil water 2H/1H, (iii) differences in xylem water 2H/1H, and (iv) differences in leaf water evaporative 2H-enrichment due to varied plant life forms, cannot explain the range of n-alkane δ2H values we observed. Results from this study suggests that accurate reconstructions of palaeoclimate regimes from sedimentary n-alkane δ2H require further research to constrain those biological mechanisms influencing species-specific differences in 2H/1H fractionation during lipid biosynthesis, in particular where plants have developed biochemical adaptations to water-stressed conditions. Understanding how these mechanisms interact with environmental conditions will be crucial to ensure accurate interpretation of hydrogen isotope signals from the geological record.

Original languageEnglish
Pages (from-to)13-28
Number of pages16
JournalGeochimica et Cosmochimica Acta
Volume128
DOIs
Publication statusPublished - 1 Mar 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Understanding 2H/1H systematics of leaf wax n-alkanes in coastal plants at Stiffkey saltmarsh, Norfolk, UK'. Together they form a unique fingerprint.

Cite this