Thermoacoustic sound projector: Exceeding the fundamental efficiency of carbon nanotubes

Ali E. Aliev, Daniel Codoluto, Ray H. Baughman, Raquel Ovalle-Robles, Kanzan Inoue, Stepan A. Romanov, Albert G. Nasibulin, Prashant Kumar, Shashank Priya, Nathanael K. Mayo, John B. Blottman

    Research output: Contribution to journalArticlepeer-review

    10 Citations (Scopus)

    Abstract

    The combination of smooth, continuous sound spectra produced by a sound source having no vibrating parts, a nanoscale thickness of a flexible active layer and the feasibility of creating large, conformal projectors provoke interest in thermoacoustic phenomena. However, at low frequencies, the sound pressure level (SPL) and the sound generation efficiency of an open carbon nanotube sheet (CNTS) is low. In addition, the nanoscale thickness of fragile heating elements, their high sensitivity to the environment and the high surface temperatures practical for thermoacoustic sound generation necessitate protective encapsulation of a freestanding CNTS in inert gases. Encapsulation provides the desired increase of sound pressure towards low frequencies. However, the protective enclosure restricts heat dissipation from the resistively heated CNTS and the interior of the encapsulated device. Here, the heat dissipation issue is addressed by short pulse excitations of the CNTS. An overall increase of energy conversion efficiency by more than four orders (from 10-5 to 0.1) and the SPL of 120 dB re 20 μPa @ 1 m in air and 170 dB re 1 μPa @ 1 m in water were demonstrated. The short pulse excitation provides a stable linear increase of output sound pressure with substantially increased input power density (>2.5 W cm-2). We provide an extensive experimental study of pulse excitations in different thermodynamic regimes for freestanding CNTSs with varying thermal inertias (single-walled and multiwalled with varying diameters and numbers of superimposed sheet layers) in vacuum and in air. The acoustical and geometrical parameters providing further enhancement of energy conversion efficiency are discussed.

    Original languageEnglish
    Article number325704
    JournalNanotechnology
    Volume29
    Issue number32
    DOIs
    Publication statusPublished - 5 Jun 2018

    Keywords

    • carbon nanotubes
    • heat transfer
    • pulse excitation
    • sonar projectors
    • sound
    • thermoacoustics

    Fingerprint

    Dive into the research topics of 'Thermoacoustic sound projector: Exceeding the fundamental efficiency of carbon nanotubes'. Together they form a unique fingerprint.

    Cite this