Systematic design of virtual component method for inverter-based microgrids

Po Hsu Huang, Petr Vorobev, Mohamed Al Hosani, James L. Kirtley, Konstantin Turitsyn

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Citations (Scopus)

Abstract

Control design of inverter-based microgrids plays a significant role in affecting dynamic performance of the system. Conventional microgrid droop control suffers from instability due to low X/R ratios and unique network characteristics as compared to large power systems. While many approaches such as virtual framework methods, virtual impedance methods, or synchronverters have been proposed and proven effective, an intuitive and fundamental insight into physical origins of instability has not yet been sufficiently disclosed. In this paper, a systematic approach for enhancing the stability of inverter-based microgrids is proposed. A test system is studied to derive simple and concise stability criteria based on the proposed Lyapunov function method. Particularly, we show that unlike in large-scale power systems, for microgrids the transient susceptance B′ plays a crucial role in contracting the region of stable droop gains. Control schemes to minimize B′ are then investigated, enabling a different perspective in views of the virtual component method. Finally, simulations are carried out to validate the proposed approach via direct time-domain analysis.

Original languageEnglish
Title of host publication2017 IEEE Power and Energy Society General Meeting, PESGM 2017
PublisherIEEE Computer Society
Pages1-5
Number of pages5
ISBN (Electronic)9781538622124
DOIs
Publication statusPublished - 29 Jan 2018
Event2017 IEEE Power and Energy Society General Meeting, PESGM 2017 - Chicago, United States
Duration: 16 Jul 201720 Jul 2017

Publication series

NameIEEE Power and Energy Society General Meeting
Volume2018-January
ISSN (Print)1944-9925
ISSN (Electronic)1944-9933

Conference

Conference2017 IEEE Power and Energy Society General Meeting, PESGM 2017
Country/TerritoryUnited States
CityChicago
Period16/07/1720/07/17

Keywords

  • Droop control
  • Lyapunov function
  • Microgrids
  • Small-signal stability

Fingerprint

Dive into the research topics of 'Systematic design of virtual component method for inverter-based microgrids'. Together they form a unique fingerprint.

Cite this