Steady oscillations in aggregation-fragmentation processes

N. V. Brilliantov, W. Otieno, S. A. Matveev, A. P. Smirnov, E. E. Tyrtyshnikov, P. L. Krapivsky

    Research output: Contribution to journalArticlepeer-review

    13 Citations (Scopus)

    Abstract

    We report surprising steady oscillations in aggregation-fragmentation processes. Oscillating solutions are observed for the class of aggregation kernels Ki,j=iνjμ+jνiμ homogeneous in masses i and j of merging clusters and fragmentation kernels, Fij=λKij, with parameter λ quantifying the intensity of the disruptive impacts. We assume a complete decomposition (shattering) of colliding partners into monomers. We show that an assumption of a steady-state distribution of cluster sizes, compatible with governing equations, yields a power law with an exponential cutoff. This prediction agrees with simulation results when θ≡ν-μ<1. For θ=ν-μ>1, however, the densities exhibit an oscillatory behavior. While these oscillations decay for not very small λ, they become steady if θ is close to 2 and λ is very small. Simulation results lead to a conjecture that for θ<1 the system has a stable fixed point, corresponding to the steady-state density distribution, while for any θ>1 there exists a critical value λc, such that for λ<λc, the system has an attracting limit cycle. This is rather striking for a closed system of Smoluchowski-like equations, lacking any sinks and sources of mass.

    Original languageEnglish
    Article number012109
    JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
    Volume98
    Issue number1
    DOIs
    Publication statusPublished - 11 Jul 2018

    Fingerprint

    Dive into the research topics of 'Steady oscillations in aggregation-fragmentation processes'. Together they form a unique fingerprint.

    Cite this