Soliton content in the standard optical OFDM signal

Egor V. Sedov, Alexey A. Redyuk, Mikhail P. Fedoruk, Andrey A. Gelash, Leonid L. Frumin, Sergey K. Turitsyn

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

The nonlinear Schrödinger equation (NLSE) is often used as a master path-average model for fiber-optic transmission lines. In general, the NLSE describes the co-existence of dispersive waves and soliton pulses. The propagation of a signal in such a nonlinear channel is conceptually different from linear systems. We demonstrate here that the conventional orthogonal frequency-division multiplexing (OFDM) input optical signal at powers typical for modern communication systems might have soliton components statistically created by the random process corresponding to the information content. Applying the Zakharov–Shabat spectral problem to a single OFDM symbol with multiple subcarriers, we quantify the effect of the statistical soliton occurrence in such an information-bearing optical signal. Moreover, we observe that at signal powers optimal for transmission, an OFDM symbol incorporates multiple solitons with high probability. The considered optical communication example is relevant to a more general physical problem of the generation of coherent structures from noise.

Original languageEnglish
Pages (from-to)5985-5988
Number of pages4
JournalOptics Letters
Volume43
Issue number24
DOIs
Publication statusPublished - 15 Dec 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Soliton content in the standard optical OFDM signal'. Together they form a unique fingerprint.

Cite this