Small satellite synthetic aperture radar (SAR) design: A trade space exploration model

Alessandro Golkar, Giuseppe Cataldo, Ksenia Osipova

Research output: Contribution to journalArticlepeer-review

Abstract

As small satellites are finding increased applicability in a number of space missions, the community is actively exploring the feasibility of missions employing active instruments on small spacecraft. In particular, synthetic aperture radars are of interest as they prove to be versatile tools for Earth Observation purposes. This paper proposes a trade space exploration model to identify designs for space-borne satellite synthetic aperture radars that address the desired instrument requirements. Two trade space analysis approaches are proposed, based on a multivariate analysis with two evaluation metrics and using parallel coordinate plots. The paper demonstrates the utility of the trade space model by considering two case studies. The first study looks at radar instruments on a broad range of small satellite platforms. This study narrows down a trade space of 1265 feasible radar designs to less than 44 Pareto optimal designs at different center frequencies (C- and X-band), elicits conditions for L-band SARs feasibility, and discusses the feasibility bounds and technical constraints on associated instrument and spacecraft requirements. The second study considers radars for 3U CubeSat platforms. The study identifies 44 Pareto optimal designs within 12,928 feasible designs and sheds light on the operational constraints required for the development of such innovative miniaturized radars.

Original languageEnglish
Pages (from-to)458-474
Number of pages17
JournalActa Astronautica
Volume187
DOIs
Publication statusPublished - Oct 2021

Keywords

  • SAR
  • Small satellites
  • Synthetic aperture radar
  • Trade space exploration

Fingerprint

Dive into the research topics of 'Small satellite synthetic aperture radar (SAR) design: A trade space exploration model'. Together they form a unique fingerprint.

Cite this