Simultaneous wavelength and orbital angular momentum demultiplexing using tunable MEMS-based Fabry-Perot filter

Vladimir S. Lyubopytov, Alexey P. Porfirev, Stanislav O. Gurbatov, Sujoy Paul, Martin F. Schumann, Julijan Cesar, Mohammadreza Malekizandi, Mohammad T. Haidar, Martin Wegener, Arkadi Chipouline, Franko Küppers

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

In this paper, we experimentally demonstrate simultaneous wavelength and orbital angular momentum (OAM) multiplexing/demultiplexing of 10 Gbit/s data streams using a new on-chip micro-component-tunable MEMS-based Fabry-Perot filter integrated with a spiral phase plate. In the experiment, two wavelengths, each of them carrying two channels with zero and nonzero OAMs, form four independent information channels. In case of spacing between wavelength channels of 0.8 nm and intensity modulation, power penalties relative to the transmission of one channel do not exceed 1.45, 0.79 and 0.46 dB at the harddecision forward-error correction (HD-FEC) bit-error-rate (BER) limit 3.8 × 10□3 when multiplexing a Gaussian beam and OAM beams of azimuthal orders 1, 2 and 3 respectively. In case of phase modulation, power penalties do not exceed 1.77, 0.54 and 0.79 dB respectively. At the 0.4 nm wavelength grid, maximum power penalties at the HD-FEC BER threshold relative to the 0.8 nm wavelength spacing read 0.83, 0.84 and 1.15 dB when multiplexing a Gaussian beam and OAM beams of 1st, 2nd and 3rd orders respectively. The novelty and impact of the proposed filter design is in providing practical, integrable, cheap, and reliable transformation of OAM states simultaneously with the selection of a particular wavelength in wavelength division multiplexing (WDM). The proposed on-chip device can be useful in future high-capacity optical communications with spatial-and wavelengthdivision multiplexing, especially for short-range communication links and optical interconnects.

Original languageEnglish
Pages (from-to)9634-9646
Number of pages13
JournalOptics Express
Volume25
Issue number9
DOIs
Publication statusPublished - 1 May 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Simultaneous wavelength and orbital angular momentum demultiplexing using tunable MEMS-based Fabry-Perot filter'. Together they form a unique fingerprint.

Cite this