RNA-seq analysis of an apical meristem time series reveals a critical point in Arabidopsis thaliana flower initiation

Anna V. Klepikova, Maria D. Logacheva, Sergey E. Dmitriev, Aleksey A. Penin

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)


Background: Floral transition is a critical event in the life cycle of a flowering plant as it determines its reproductive success. Despite extensive studies of specific genes that regulate this process, the global changes in transcript expression profiles at the point when a vegetative meristem transitions into an inflorescence have not been reported. We analyzed gene expression during Arabidopsis thaliana meristem development under long day conditions from day 7 to 16 after germination in one-day increments. Results: The dynamics of the expression of the main flowering regulators was consistent with previous reports: notably, the expression of FLOWERING LOCUS C (FLC) decreased over the course of the time series while expression of LEAFY (LFY) increased. This analysis revealed a developmental time point between 10 and 12 days after germination where FLC expression had decreased but LFY expression had not yet increased, which was characterized by a peak in the number of differentially expressed genes. Gene Ontology (GO) enrichment analysis of these genes identified an overrepresentation of genes related to the cell cycle. Conclusions: We discovered an unprecedented burst of differential expression of cell cycle related genes at one particular point during transition to flowering. We suggest that acceleration of rate of the divisions and partial cell cycling synchronization takes place at this point.

Original languageEnglish
Article number466
JournalBMC Genomics
Issue number1
Publication statusPublished - 18 Jun 2015
Externally publishedYes


  • Arabidopsis thaliana
  • Cell cycle
  • Flowering
  • Gene expression
  • Meristem
  • RNA-seq


Dive into the research topics of 'RNA-seq analysis of an apical meristem time series reveals a critical point in Arabidopsis thaliana flower initiation'. Together they form a unique fingerprint.

Cite this