Partitioned Hierarchical alternating least squares algorithm for CP tensor decomposition

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Canonical polyadic decomposition (CPD), also known as PARAFAC, is a representation of a given tensor as a sum of rank-one tensors. Traditional method for accomplishing CPD is the alternating least squares (ALS) algorithm. This algorithm is easy to implement with very low computational complexity per iteration. A disadvantage is that in difficult scenarios, where factor matrices in the decomposition contain nearly collinear columns, the number of iterations needed to achieve convergence might be very large. In this paper, we propose a modification of the algorithm which has similar complexity per iteration as ALS, but in difficult scenarios it needs a significantly lower number of iterations.

Original languageEnglish
Title of host publication2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2542-2546
Number of pages5
ISBN (Electronic)9781509041176
DOIs
Publication statusPublished - 16 Jun 2017
Externally publishedYes
Event2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, United States
Duration: 5 Mar 20179 Mar 2017

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
Country/TerritoryUnited States
CityNew Orleans
Period5/03/179/03/17

Keywords

  • CANDECOMP/PARAFAC
  • partitioning ALS
  • tensor decomposition

Fingerprint

Dive into the research topics of 'Partitioned Hierarchical alternating least squares algorithm for CP tensor decomposition'. Together they form a unique fingerprint.

Cite this