Onset of superconductivity in a voltage-biased normal-superconducting- normal microbridge

Maksym Serbyn, Mikhail A. Skvortsov

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)


We study the stability of the normal state in a mesoscopic NSN junction biased by a constant voltage V with respect to the formation of the superconducting order. Using the linearized time-dependent Ginzburg-Landau equation, we obtain the temperature dependence of the instability line, V inst(T), where nucleation of superconductivity takes place. For sufficiently low biases, a stationary symmetric superconducting state emerges below the instability line. For higher biases, the normal phase is destroyed by the formation of a nonstationary bimodal state with two superconducting nuclei localized near the opposite terminals. The low-temperature and large-voltage behavior of the instability line is highly sensitive to the details of the inelastic relaxation mechanism in the wire. Therefore, experimental studies of Vinst(T) in NSN junctions may be used as an effective tool to access the parameters of the inelastic relaxation in the normal state.

Original languageEnglish
Article number020501
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number2
Publication statusPublished - 2 Jan 2013
Externally publishedYes


Dive into the research topics of 'Onset of superconductivity in a voltage-biased normal-superconducting- normal microbridge'. Together they form a unique fingerprint.

Cite this