On-line adaptive side-by-side human robot companion in dynamic urban environments

Ely Repiso, Gonzalo Ferrer, Alberto Sanfeliu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Citations (Scopus)

Abstract

This paper presents an adaptive side-by-side human-robot companion approach for navigation in urban dynamic environments, based on the anticipative kinodynamic planning. The adaptive means that the robot is capable of adjusting its motion to the behavior of the person being accompanied. Our main objective is to optimize in real time the path performed by the pair human-robot, by modifying dynamically the angle and distance between both throughout different locations of the path. We have defined a new cost function for finding the best planned path that takes into account the cost of the geometrical configuration between the human and the robot. Moreover, we have modified the Extended Social Force Model (SFM) to include the required forces to maintain the angle and distance between the robot and human while the human-robot pair is moving towards the shared goal. The method has been validated throughout a large set of simulations and real-live experiments.

Original languageEnglish
Title of host publicationIROS 2017 - IEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages872-877
Number of pages6
ISBN (Electronic)9781538626825
DOIs
Publication statusPublished - 13 Dec 2017
Externally publishedYes
Event2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017 - Vancouver, Canada
Duration: 24 Sep 201728 Sep 2017

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2017-September
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017
Country/TerritoryCanada
CityVancouver
Period24/09/1728/09/17

Fingerprint

Dive into the research topics of 'On-line adaptive side-by-side human robot companion in dynamic urban environments'. Together they form a unique fingerprint.

Cite this