Non-ergodic extended phase of the Quantum Random Energy model

Lara Faoro, Mikhail V. Feigel'man, Lev Ioffe

    Research output: Contribution to journalArticlepeer-review

    22 Citations (Scopus)

    Abstract

    The concept of non-ergodicity in quantum many body systems can be discussed in the context of the wave functions of the many body system or as a property of the dynamical observables, such as time-dependent spin correlators. In the former approach the non-ergodic delocalized state is defined as the one in which the wave functions occupy a volume that scales as a non-trivial power of the full phase space. In this work we study the simplest spin glass model and find that in the delocalized non-ergodic regime the spin–spin correlators decay with the characteristic time that scales as non-trivial power of the full Hilbert space volume. The long time limit of this correlator also scales as a power of the full Hilbert space volume. We identify this phase with the glass phase whilst the many body localized phase corresponds to a ’hyperglass’ in which dynamics is practically absent. We discuss the implications of these findings to quantum information problems.

    Original languageEnglish
    Article number167916
    JournalAnnals of Physics
    Volume409
    DOIs
    Publication statusPublished - Oct 2019

    Keywords

    • Many body localization
    • Non-ergodicity
    • Quantum spin glass

    Fingerprint

    Dive into the research topics of 'Non-ergodic extended phase of the Quantum Random Energy model'. Together they form a unique fingerprint.

    Cite this